Elliptic Curves with Maximal Galois Action on Their Torsion Points
نویسنده
چکیده
Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, ρE : Gal(k/k) → GL2(b Z). For a fixed number field k, we describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves over k.
منابع مشابه
An Infinite Family of Serre Curves
Given an elliptic curve E/Q, the torsion points of E give rise to a natural Galois representation ρE : Gal(Q/Q) → GL2(Ẑ) associated to E. In 1972, Serre showed that [GL2(Ẑ) : Im ρE ] ≥ 2 for all non-CM elliptic curves. The main goal of this paper is to exhibit an elliptic surface such that the Galois representations associated to almost all of the rational specializations have maximal image. Fu...
متن کاملModular Curves of Prime-power Level with Infinitely Many Rational Points
For each open subgroup G of GL2(Ẑ) containing −I with full determinant, let XG/Q denote the modular curve that loosely parametrizes elliptic curves whose Galois representation, which arises from the Galois action on its torsion points, has image contained in G. Up to conjugacy, we determine a complete list of the 248 such groups G of prime power level for which XG(Q) is infinite. For each G, we...
متن کاملElliptic Curves with Surjective Adelic Galois Representations
Let K be a number field. The Gal(K/K)-action on the the torsion of an elliptic curve E/K gives rise to an adelic representation ρE : Gal(K/K) → GL2(Ẑ). From an analysis of maximal closed subgroups of GL2(Ẑ) we derive useful necessary and sufficient conditions for ρE to be surjective. Using these conditions, we compute an example of a number field K and an elliptic curve E/K that admits a surjec...
متن کاملOn Fields of Definition of Torsion Points of Elliptic Curves with Complex Multiplication
For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definiti...
متن کاملAlmost Rational Torsion Points on Semistable Elliptic Curves
If P is an algebraic point on a commutative group scheme A/K, then P is almost rational if no two non-trivial Galois conjugates σP , τP of P have sum equal to 2P . In this paper, we classify almost rational torsion points on semistable elliptic curves over Q. 1 Definitions and Results Let X be an algebraic curve of genus greater than one. Let J(X) be the Jacobian variety of X, and embed X in J(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008